Browse Articles
Horticulture Research 9,
Article number: uhab004 (2022)
doi: https://doi.org/10.1093/hr/uhab004
Views: 299
Received: 01 Apr 2021
Revised: 19 Jan 2022
Accepted: 21 Oct 2021
Published online: 28 Jan 2022
Target activation-induced cytidine deaminase (Target-AID), a novel CRISPR/Cas9-based genome-editing tool, confers the base-editing capability on the Cas9 genome-editing system. It involves the fusion of cytidine deaminase (CDA), which catalyzes cytidine (C) to uridine (U) substitutions, to the mutated nickase-type nCas9 or deactivated-type dCas9. To confirm and extend the applicability of the Target-AID genome-editing system in tomatoes (Solanum lycopersicum L.), we transformed the model tomato cultivar “Micro-Tom” and commercial tomato cultivars using this system by targeting SlDELLA, which encodes a negative regulator of the plant phytohormone gibberellic acid (GA) signaling pathway. We confirmed that the nucleotide substitutions were induced by the Target-AID system, and we isolated mutants showing high GA sensitivity in both “Micro-Tom” and the commercial cultivars. Moreover, by successfully applying this system to ETHYLENE RECEPTOR 1 (SlETR1) with single sgRNA targeting, double sgRNA targeting, as well as dual-targeting of both SlETR1 and SlETR2 with a single sgRNA, we demonstrated that the Target-AID genome-editing system is a promising tool for molecular breeding in tomato crops. This study highlights an important aspect of the scientific and agricultural potential of the combinatorial use of the Target-AID and other base-editing systems.