Browse Articles

Article|07 Sep 2019|OPEN
Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool
Yuanji Han1 , , Hongyun Wang1 , Xiaodan Wang1 , Ke Li1 , Meifang Dong1 , Yong Li1 , Qian Zhu1 and Fude Shang,1 ,
1School of Life Sciences, State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, Laboratory of Plant Germplasm and Genetic Engineering, Henan University, Kaifeng 475004 Henan, China
*Corresponding author. E-mail: wolianghan@163.com,fudeshang@henu.edu.cn

Horticulture Research 6,
Article number: 106 (2019)
doi: https://doi.org/10.1038/s41438-019-0189-4
Views: 997

Received: 14 Mar 2019
Revised: 26 Jul 2019
Accepted: 29 Jul 2019
Published online: 07 Sep 2019

Abstract

Sweet osmanthus (Osmanthus fragrans Lour.) is among the top ten most well-known flowers in China and is recognized as both an aromatic plant and ornamental flower. Here, manual sectioning, scanning electron microscopy, and transmission electron microscopy of sweet osmanthus petals revealed that large amounts of lipids are present inside the petal cells and on the cell surfaces. However, no secretory structures were observed. Instead, the petal cells protrude slightly outward, and the surfaces of the cells are adorned with highly regular brush-shaped hairs. The surfaces of the ‘Yingui’ petals possessed mostly curled and more numerous hairs, whereas the ‘Dangui’ petals possessed fewer brush-shaped and more sparsely arranged hairs. In addition, many granular substances were attached to the brush-shaped hairs, and the granules were denser on the hairs of the ‘Yingui’ petals compared to the hairs on the ‘Dangui’ petals. Furthermore, 35 aromatic components in the ‘Yingui’ petals and 30 aromatic components in the ‘Dangui’ petals were detected via GC-MS. The main aromatic component of the ‘Yingui’ petals was β-ionone, whereas that of the ‘Dangui’ petals was linalool and its oxides. Transcriptome sequencing and qRT-PCR indicated that the high β-ionone content in the ‘Yingui’ petals was due to the overexpression of CCD1 and CCD4 and that the high linalool content in the ‘Dangui’ petals was due to the overexpression of MECS, HDR, IDI1, and LIS1, which function upstream of the linalool synthetic pathway. In particular, the expression levels of CCD4 and LIS1 were upregulated by 5.5- and 5.1-fold in the ‘Yingui’ and ‘Dangui’ petals, respectively. One transcription factor (ERF61) was cloned and named, and the expression pattern of ERF61 in sweet osmanthus petals was found to be generally consistent with that of CCD4. Tobacco transformation experiments, yeast one-hybrid experiments, and electrophoretic mobility shift assays indicated that ERF61 binds to the CCD4 promoter and stimulates CCD4 expression, thereby regulating the synthesis of β-ionone in sweet osmanthus petals.