Browse Articles

Article|06 Apr 2019|OPEN
Low-cost assembly of a cacao crop genome is able to resolve complex heterozygous bubbles
Joe Morrissey1 , J. Conrad Stack1 , Rebecca Valls1 and Juan Carlos Motamayor,1 ,
1Mars Chocolate, 13601 Old Cutler Road, Miami, FL 33158, USA
*Corresponding author. E-mail: juan.motamayor1@effem.com

Horticulture Research 6,
Article number: 44 (2019)
doi: https://doi.org/10.1038/s41438-019-0125-7
Views: 934

Received: 13 Jul 2018
Revised: 18 Oct 2018
Accepted: 02 Jan 2019
Published online: 06 Apr 2019

Abstract

Cacao (Theobroma cacao) is a tropical tree that produces the essential raw material for chocolate. Because yields have been stagnant, land use has expanded to provide for increasing chocolate demand. Assembled genomes of key parents could modernize breeding programs in the remote and under-resourced locations where cacao is grown. The MinION, a long read sequencer that runs off of a laptop computer, has the potential to facilitate the assembly of the complex genomes of high-yielding F1 hybrids. Here, we validate the MinION’s application to heterozygous crops by creating a de novo genome assembly of a key parent in breeding programs, the clone Pound 7. Our MinION-only assembly was 20% larger than the latest released cacao genome, with 10-fold greater contiguity, and the resolution of complex heterozygosity and repetitive elements. Polishing with Illumina short reads brought the predicted completeness of our assembly to similar levels to the previously released cacao genome assemblies. In contrast to previous cacao genome projects, our assembly required only a small scientific team and limited reagents. Our sequencing and assembly methods could easily be adopted by under-resourced breeding programs, speeding crop improvement in the developing world.